Engineering: Fully Funded M2A EngD Scholarship at Swansea: CMSX-3 and CMSX-4

  • Phd
  • Full cost of UK tuition fees, plus a stipend
  • 5 April 2021
Visit Scholarship Website

Engineering: Fully Funded M2A EngD Scholarship: Mechanical Characterisation of CMSX-3 and CMSX-4 with Pt and PtAl Coatings Under Thermo-Mechanical Fatigue Loading Conditions

Start date: October 2021

Supervisor: Professor R Lancaster and Professor M Whittaker

Expected Interview Date: April 2021

Sponsoring company: Rolls Royce plc

The approach for the assessment of fatigue damage from cyclic variation of stress, strain and temperature as experienced in the hot section of a gas turbine uses the range of stress or strain and the maximum temperature attained in the cycle against which to predict the damage from fatigue curves. This results in a fatigue life based on an elastic prediction which is then assessed against the engine life requirements. Recent methods have proposed the generic use of analyses with plasticity and creep included to determine the relaxed stress and strain state with a revised fatigue damage assessment approach.

In the case of hot section components, the stress or strain may vary in-phase with the temperature, or there may be a phase difference which at its extreme would be completely out-of-phase with the temperature. This case occurs in a hotspot where the maximum temperature condition generates a significant compressive stress.

In other types of cycle where transient effects occur due to the boundary conditions of the external hot gas temperature and the internal cooling temperature combined with the mechanical loading due to rotational and gas loading forces, the peak stress or strain may develop on the rise or fall to the peak temperature condition, and would correspond to a much lower temperature than the peak.

Such components do have the added benefit of thermal barrier coatings, but to date, little understanding is currently available that truly captures how the mechanical behaviour differentiates across the two materials.

The work proposed in this project is to investigate thermo-mechanical fatigue damage in high temperature coated systems through a thorough review of existing data available on single crystal materials, to develop a TMF lifing model that can represent the true service behaviour observed including the influence of creep and oxidation that occurs at high stresses and temperatures, to validate this model with targeted TMF tests and to investigate the fracture behaviour of the TMF experiments in comparison with predicted stress fields from finite element models.

The work could investigate how damage is accumulated in a range of TMF cycles, predicting the first cycle and stabilised cycle responses under these conditions. The incremental accumulation of damage around the cycle may generate an understanding of the driving behaviours in TMF. In particular, a holistic knowledge of the damage evolution experienced in a counter-clockwise -135° cycle is of great interest. Research could also incorporate the use of PD crack monitoring and Digital Image Correlation (DIC) for advanced characterisation of the TMF behaviour.

The materials of choice would be the nickel based single crystal superalloys CMSX-3 and CMSX-4 with Pt and PtAl coating systems.

TMF test data from Rolls-Royce would be made available in addition to that available from open literature.

Outline Plan:

  • Familiarisation with previous work, literature and fatigue data on TMF in single crystals, with particular emphasis on coated materials
  • Develop TMF testing capability and propose validation tests
  • Perform validation tests including fractographic studies
  • Demonstrate application to an engine component

The Materials and Manufacturing Academy (M2A) in the College of Engineering is a Swansea University initiative which provides postgraduate research training in partnership with industry; providing access to world-class laboratories and a wealth of academic and industry expertise. The M2A is committed to providing top quality research opportunities within an inclusive environment, funded by the Welsh European Funding Office (WEFO), the Engineering and Physical Sciences Research Council (EPSRC), Swansea University and Industry partners.

Interwoven through the research study are business, technical and entrepreneurial courses, designed to support and prepare participants for a senior role in industry or academia, on completion of their studies. Research Engineers may participate in our career mentoring system, offering opportunity to engage with M2A alumni and other senior staff from across the University.

The Athena SWAN charter recognises work undertaken by institutions to advance gender equality. The College of Engineering is an Athena SWAN bronze award holder and is committee to addressing unequal gender representation. Applications from women are particularly welcomed.

Swansea University
This is a scholarship by

Swansea University

Swansea, is a coastal city and county, officially known as the City and County of Swansea in Wales.

Eligibility

We welcome applications from candidates with an Engineering or Physical Science degree (minimum level 2:1), or a combination of degree and equivalent relevant experience to the same level, to join the M2A community of research engineers.

We would normally expect candidates to have met the University’s English Language requirements (e.g. IELTS 6.5 overall with 5.5+ in each component) by point of application.

Due to funding restrictions, this scholarship is not open to ‘International’ candidates.

IELTS

Do you wish to become an international student next year?
Demonstrate your English skills with IELTS.

Benefits

The scholarship covers the full cost of UK tuition fees, plus a stipend of £20,000 p.a. for a period of four years.

Application

Please visit our website for more information.

Apply Now

Sign Up for Scholarship Updates

Get an email every week that 10.000's of students use to get the latest scholarships.

Name
Email